\(\int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\) [104]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 91 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d} \]

[Out]

2*A*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d/a^(1/2)-(A-B)*arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/
(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {3064, 2728, 212, 2852} \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x])/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(2*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(Sqrt[a]*d) - (Sqrt[2]*(A - B)*ArcTanh[(Sqrt[a]
*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3064

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {A \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx}{a}-(A-B) \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx \\ & = -\frac {(2 A) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {(2 (A-B)) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = \frac {2 A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.79 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=-\frac {2 \left ((A-B) \text {arctanh}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-\sqrt {2} A \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right )}{d \sqrt {a (1+\cos (c+d x))}} \]

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x])/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(-2*((A - B)*ArcTanh[Sin[(c + d*x)/2]] - Sqrt[2]*A*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]])*Cos[(c + d*x)/2])/(d*Sqr
t[a*(1 + Cos[c + d*x])])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(271\) vs. \(2(76)=152\).

Time = 4.61 (sec) , antiderivative size = 272, normalized size of antiderivative = 2.99

method result size
default \(\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+4 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )+A \sqrt {2}\, \ln \left (-\frac {2 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )-2 \ln \left (\frac {2 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+2 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) A +2 \ln \left (\frac {2 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+2 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) B \right ) \sqrt {2}}{2 \sqrt {a}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(272\)
parts \(-\frac {A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right )-\ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )-\ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )\right )}{\sqrt {a}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}+\frac {B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \ln \left (\frac {2 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+2 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \sqrt {2}}{\sqrt {a}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(324\)

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)/(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*2^(1/2)*ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*
a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+A*2^(1/2)*ln(-2/(2*cos(1/2*d*x+1/2*c
)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))-2*ln(2*(a^(1/2)*
(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a)/cos(1/2*d*x+1/2*c))*A+2*ln(2*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a)/cos(
1/2*d*x+1/2*c))*B)/a^(1/2)/sin(1/2*d*x+1/2*c)*2^(1/2)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 171 vs. \(2 (76) = 152\).

Time = 0.34 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.88 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=-\frac {\sqrt {2} {\left (A - B\right )} \sqrt {a} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - A \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{2 \, a d} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/2*(sqrt(2)*(A - B)*sqrt(a)*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(a) -
 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - A*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x +
c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c
)^2)))/(a*d)

Sympy [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))*sec(c + d*x)/sqrt(a*(cos(c + d*x) + 1)), x)

Maxima [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.00 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {{\left (\sqrt {2} \log \left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) - \sqrt {2} \log \left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )\right )} B}{2 \, \sqrt {a} d} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/2*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(c
os(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*B/(sqrt(a)*d)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 165 vs. \(2 (76) = 152\).

Time = 0.35 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.81 \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=-\frac {\frac {\sqrt {2} {\left (A \sqrt {a} - B \sqrt {a}\right )} \log \left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {\sqrt {2} {\left (A \sqrt {a} - B \sqrt {a}\right )} \log \left (-\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {2 \, A \log \left ({\left | \frac {1}{2} \, \sqrt {2} + \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {2 \, A \log \left ({\left | -\frac {1}{2} \, \sqrt {2} + \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{2 \, d} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/2*(sqrt(2)*(A*sqrt(a) - B*sqrt(a))*log(sin(1/2*d*x + 1/2*c) + 1)/(a*sgn(cos(1/2*d*x + 1/2*c))) - sqrt(2)*(A
*sqrt(a) - B*sqrt(a))*log(-sin(1/2*d*x + 1/2*c) + 1)/(a*sgn(cos(1/2*d*x + 1/2*c))) - 2*A*log(abs(1/2*sqrt(2) +
 sin(1/2*d*x + 1/2*c)))/(sqrt(a)*sgn(cos(1/2*d*x + 1/2*c))) + 2*A*log(abs(-1/2*sqrt(2) + sin(1/2*d*x + 1/2*c))
)/(sqrt(a)*sgn(cos(1/2*d*x + 1/2*c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{\cos \left (c+d\,x\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((A + B*cos(c + d*x))/(cos(c + d*x)*(a + a*cos(c + d*x))^(1/2)),x)

[Out]

int((A + B*cos(c + d*x))/(cos(c + d*x)*(a + a*cos(c + d*x))^(1/2)), x)